
Short-term and long-term impacts of climate

change on European agriculture revenue:

weather versus climate data

Abstract

Climate change is now an evidence (IPCC, 2014). Less obvious is the quantification of

the impacts on economic indicators whereas it is the main driver of international aware-

ness. We compare in this paper the impacts of long-run climate and short-run weather

variations on the economic profitability of agriculture in Europe. This comparison is

made within a spatial panel econometric framework that captures the temporal and spa-

tial variability of agricultural revenues. Our econometric models take into account both

the non-observable individual heterogeneity of the EU (FADN) regions and the spatial

auto-correlation between these regions. We use our estimation results to calculate the

marginal impacts of climate and weather variations on agricultural revenues. Our results

show that weather indicators should be preferred into revenue function estimations when

measuring climate change impacts.
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1 Introduction

Agriculture is the key food production, natural resources and environmental sector (EU, 2016).

Agriculture provides important natural resources and biodiversity preservation and manage-

ment and agricultural revenues depend heavily on natural resources availability and quality

(e.g. water). Thus, farmers are on the front line in relation to their preservation. In addition,

agriculture shapes the landscape and provides the living environment of a large population.

Nearly half of the population of the European Union (EU) lives in rural areas. If agriculture

were to disappear, many areas would face a land abandonment problem. Finally, many jobs are

linked to the agricultural sector. In addition to farmers and farm works, there is employment in

the upstream (fuels and fertilizers suppliers, veterinary services, etc.) and downstream (prepa-

ration, processing, packaging of foodstuffs) sectors. The agricultural sector counts 22 million

workers in the European Union, and if we include the food production sector this number dou-

bles (EU, 2016). Thus, agriculture and food production are essential components of the EU

economy.

Climate change is a significant issue. It could have a negative impact on farmers’ work, natural

resources, and farm productivity, and expose both the agriculture and food production sectors

to major vulnerabilities. Agriculture faces the dual challenge of producing food and protecting
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natural resource, and climate change will exacerbate the difficulty involved in juggling between

these two goals. To face the challenges induced by a changing climate EU agriculture will need

to make some adaptations.

The last Common Agricultural Policy reform (CAP 2014-2020) is one of the strongest re-

sponses to the challenges of food security and climate change in the EU. CAP 2014 aims to

increase agriculture resilience by providing guidelines and financial support for farmers to pre-

vent adaptations. Adaptation measures can be short-term or long-term. Long-term adaptation

measures include the protection of natural resources such as water which are important for the

agriculture, and encouraging investment in R&D to develop new technologies and crops. How-

ever, farmers fear that the short-term adaptations required will reduce their revenue. Short-run

adaptation options depend on how climate will affect agriculture in the near future. This paper

discusses the short-run climate impacts on European agriculture in the context of adaptations

in that sector.

There are two main approaches to evaluating the impacts of climate change on agriculture.

The Ricardian approach (Mendelsohn et al., 1994) is used to estimate long-run impacts of cli-

mate on agriculture. The revenue approach (Deschênes and Greenstone, 2007) is implemented

to estimate short-run climate impacts on agricultural sector. However, the literature does not

distinguish clearly between these two methods. We suggest a separation between the revenue

and Ricardian approaches, based on different perceptions of time. Therefore, in this paper

we focus on the revenue approach initially proposed by Deschênes and Greenstone (2007) to

capture the short-run relations between climate and agriculture activities.

The revenue approach in its original implementation by Deschênes and Greenstone (2007) tends

not to be used due to its lack of an explicit theoretical model. Most estimates of net agricultural

revenues adopt the so called Ricardian model framework. This would seem to be due in part

to data availability; data on farm revenues are more accessible than data on land prices, and

especially in developing country contexts. Also, there is some confusion between the revenue

approach and the Ricardian approach in the literature, and this has led to the use of a model

that mixes these methods, i.e. uses annual revenues explained by long term average climate.

The revenue approach has been used in several cross-section studies of developing country con-

texts including Asia (Liu et al., 2004; Wang et al., 2009; Mendelsohn, 2014) and Africa (Wood

and Mendelsohn, 2015), while Kumar (2011) studies Indian agriculture using panel data. All

these works claim to be using a Ricardian approach but instead of land values they use net

revenues. Mendelsohn and Massetti (2017) note that the main advantage of the Ricardian

approach is that farmland values reflect future rents and are less affected by yearly weather

conditions. We argue that studies that estimate yearly agricultural output (profits and rev-

enues) should not claim to use a Ricardian approach because they are not based on future

revenue expectations. These studies usually use long term average climate variables whereas

agricultural revenues for the year of observation will be influenced only by the weather condi-
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tions in that year.

We start our study with the methodological approach proposed by Deschênes and Greenstone

(2007) to estimate the impact of weather fluctuations on the US agricultural sector. They argue

that a cross sectional hedonic equation could be misspecified, and suggest panel data estima-

tion based on the relation between annual agricultural profits and weather conditions. They

exploit random year-to-year variations in temperature and precipitation to estimate whether

agricultural profits are higher in warmer and wetter years (Deschênes and Greenstone, 2007).

We take account of individual (European FADN region) specificities in agricultural practices

and their changes over time. Use of panel rather than cross section data assumes that revenues

are not independent of year. From a methodological perspective, panel data correspond to

observations of individuals repeated over time which enable consideration of heterogeneity over

time and between individuals. There are different ways to exploit panel data, some of which

we use in our study.

The study of Deschênes and Greenstone (2007) was criticized by Fisher et al. (2012) who argue

that one of its limitations was biased standard errors due to spatial correlation. We take ac-

count of this by introducing spatial interactions in our panel data set. Only one paper, written

by Kumar (2011), discusses different spatial models which are used in a revenue approach to the

study of Indian agriculture. We argue that in our dataset the main source of autocorrelation is

the residuals due to the nature of our climate data which have no geographical boundaries.

To the best of our knowledge, no previous work on European agriculture uses a spatial-panel

revenue function approach. A few studies focus on yields (Iglesias et al., 2012), and most pa-

pers adopt a Ricardian approach, considering either the whole of Europe (Van Passel et al.,

2017; Vanschoenwinkel et al., 2016; Vanschoenwinkel and Van Passel, 2018) or single European

countries (Bozzola et al., 2017; Lippert et al., 2009; Chatzopoulos and Lippert, 2015). In this

paper we test the use of climate and weather variables in a European revenue function approach

within a spatial panel framework. The aim is to estimate and discuss short-term climate change

impacts and to propose the ultimate model to capture those impacts.

This paper makes four main contributions. First, to our knowledge, it is the first study to use

a revenue function approach in a European agriculture context. Second, we use spatial-panel

data models. Third, we examine and compare use of yearly weather variations and climate data

in the revenue approach. Finally, we discuss the short-term and long-term impacts of climate

change on European agriculture.

2 Methodology

In this paper we are interested in farmers’ optimal net revenues per hectare of land to capture

short-run responses to exogenous environmental shocks. Farmers maximize their net revenues
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by choosing the endogenous inputs, given market prices, weather, and other exogenous control

variables. The model can be written as R = f(W,P,Z), where R represents net agricultural

revenues, W is the annual weather1 fluctuations, P is market prices, and Z regroups other

exogenous variables.

Long-run responses to climate variations are captured using the Ricardian approach, which

supposes that the land value, also called Ricardian rent, is equal to the expected net present

value of the future stream of income derived from the land. The Ricardian model can be written

as V = f(C,P, Z), where V represents agricultural land value per hectare, C regroups long-run

climate averages.

Both models suppose that farmers are revenue maximizing and produce the exact supply re-

quired to satisfy demand, in conditions of perfect competition and, respectfully, short-term and

long-term equilibrium. In the context of climate change, the dependent variables are assumed

to be sensitive to weather and climate variations. By examining how agriculture revenues and

Ricardian rents shifts with changes in, respectfully, weather or climate variables, the impacts

of climate change can be measured by changes in the dependent variables. Thus, by calculating

the estimated effects of the perturbing weather and climate variables, wa can project the im-

pact of climate change on economic welfare. Specifically, the environmental change will affect

producer’s offer on the market and lead to a new equilibrium point. Ricardian and revenue

models are partial equilibrium approaches which assumes that changes in the environment will

not affect market prices of inputs and outputs. Under this assumption, the consumer surplus is

not affected, and producer welfare variation will capture all the environmental change impact.

The aim of this paper is to measure climate induced short-run and long-run impacts on Euro-

pean agriculture and, thus, total economic welfare.

We formulate three hypotheses related to evaluating the short-run climate change impacts

on European agriculture. Subsection 2.1 presents the empirical model specifications that we es-

timate in order to test our hypotheses. The hypotheses to be tested are presented in subsection

2.2.

2.1 Empirical model specifications

In this study we argue that annual net revenues depend directly on annual weather, and we

test weather and climate variables. For ease of understanding we differentiate between weather

and climate as follows: we call weather the meteorological conditions observed in a given year,

while climate is the average weather observed over a long period (here 25 years). We estimate

net agricultural revenue using econometric spatial-panel data models.

1For ease of understanding we differentiate between weather and climate as follows: we call weather the

meteorological conditions observed in a given year, while climate is the average weather observed over a long

period (here 25 years).
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2.1.1 Spatial effects

Fisher et al. (2012) criticized Deschênes and Greenstone (2007) biased standard errors due to

spatial autocorrelation. We take this into account by introducing spatial interactions in our

panel models.

Spatial autocorrelation or spatial dependence can result from a spatial relationship among

the values of the dependent (Y ) or explanatory (X) variables, or among the residuals (ε). Each

source of autocorrelation results in different causal effects and needs to be accounted for using

different methods to introduce spatial effects into the model. First, the spatial autocorrelation

among the dependent variables represents global spillover effects, which are captured by spa-

tial autoregressive (SAR) models (spatial lag on the Y variable). For example, a spatial lag

on the revenue dependent variable assumes that the farmer’s net revenues are affected by the

agricultural revenues of neighbouring farms. In the case of individual data this assumption is

important since farmers with similar farming practices usually are located spatially close to one

another. For imitation, historical or geographical amenities can also be important. However,

in the case of aggregate data, these assumptions make less sense. Second, local spillovers are

captured by applying a spatial lag to the explanatory X variables (SLX model). The SLX

model assumes for example, that farmers’ revenues depend on the weather conditions to which

their farms are exposed, and the weather experienced by neighbouring farms (e.g. underground

water stocks increased by precipitation). This might be important in the case of individual level

data but will not work on the aggregate scale. Also, when working with weather and climate

variables which are highly correlated, the SLX model might induce even more collinearity into

the regressions. Finally, spatial autocorrelation resulting from spatial dependence among the

residuals is captured by a spatial error model (SEM). Spatial autocorrelation in the errors im-

plies the possible presence of measurement errors which tend to spill over across the boundaries

of the aggregation unit, omitted variables, or unobserved shocks which follow a spatial pattern.

Moreover, the existence of spatial autocorrelation could be explained by the different scales of

the data and the aggregation process. Thus, SEM model is better adapted to aggregate data

due mostly to the possible existence of spatial autocorrelation in the residuals, due in turn to

the construction of our weather data. For example, weather and climate data are constructed

based on meteorological weather station data which are not spread uniformly across a space.

The “influence” boundaries of each weather station are unclear, and certainly do not coincide

with the region or commune limits. Therefore, we use a SEM model which implies the following

residual term:

εit = ρ
N∑
k

wikνit + uit, (1)

where the residual term εit is composed of the spatially autocorrelated error term, wit is the

generic element of a non negative, NxN spatial-weight matrix W, ρ is the spatial autocorrelation

coefficient, νit is the spatially correlated error term, and uit is the error term.
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When working with spatial models, W is an important component in the spatial analysis.

The estimation procedure involves specifying the spatial weight matrix W which provides a

structure for the assumed spatial relationships. There are some types of spatial weight ma-

trices based on different “neighbours” defining criteria: contiguity (simple, queen), distance,

k nearest, Gabriel. The main issue related to these criteria is the geographical structure of

European regions. For example, the choice of a contiguity (simple or queen) relation based

matrix, meaning that neighbours share the same boundary, could lead to a few isolated regions

because some Italian regions are islands. However, in the presence of isolated units the W

matrix cannot be invertible which can cause some estimation problems. Another difficulty lies

in the use of distance criteria. The sizes of European regions are heterogeneous, e.g. German

FADN regions are very small compared to those in the rest of Europe; Scandinavian FADN

regions cover very large areas for instance. Thus, using a distance based W matrix creates many

spatial relations in the central part of Europe and very few neighbours for outer regions. The

k nearest neighbours criteria allow all regions to have the same number of relations in order to

not overestimate spatial dependencies. We tested a few of them but decided to work with a

standardized weight matrix based on five nearest neighbours.

Table 1: Estimated spatial-panel models’ specifications

Equation Model notation1 Full model notation

(2) FEi-SEM-w Fixed individual effects with a spatial error model, estimated with

weather variables;

(3) FEt-SEM-w Fixed time effects with a spatial error model, estimated with weather

variables;

(4) RE-SEM-w Random effects model with a spatial error model estimated using

weather variables;

(5) REi-SEM-w Random effects model with a spatial error model estimated using

weather variables and controlling for country individual effects;

(6) REi-SEM-c Random effects model with a spatial error model estimated with long-

time climate averages and controlling for country individual effects;

(7) REi-SEM-cRi Ricardian approach based model; Random effects model with a spatial

error model estimated with long-time climate averages and controlling

for country individual effects;

2.1.2 Panel data model specifications

The main advantage of panel data is that it can be used to model heterogeneous behaviour.

This heterogeneity can be represented in the regression coefficients which can vary across indi-

1Notes: FE: fixed effects model; RE: random effects model; SEM: spatial error model; i: individual effects;

t: temporal effects, w: weather data are used in the model; c: climate data are used; Ri: Ricardian approach.
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viduals and time - i.e. a fixed effects model, or according to the structure of the residuals – i.e.

a random effects model.

In a panel regression context, individual or time differences in behaviour can be accounted

for by assuming that certain individual characteristics refer to the national policy or historical

background of a region. Two fixed effects models are estimated in this study:

- Fixed individual effects with a spatial error model (SEM) (FEi-SEM-w):

Rit = β1Wit + β2Zit + αi + εit (2)

εit = ρ

N∑
k

wikνit + uit,

where αi is fixed individual effects, and Wit comprises temperature and precipitation variables

for four seasons, and their squares.

- Fixed time effects with a SEM (FEt-SEM-w):

Rit = β1Wit + β2Zit + θt + εit, (3)

εit = ρ
N∑
k

wikνit + uit,

where θt is the coefficient of fixed temporal effects.

The fixed effects panel model assumes that the observed individuals have the same slope, and

thus the same intercept but not the same reaction. Fixed panel data use the variation within

a single individual (or/and year) type, ignoring variations between individuals (or/and years).

Since this type of variation is variation within each cross-sectional unit, the fixed effects esti-

mator is sometimes called the “within” estimator. Because the fixed effects estimator is based

on the time series component of the data, it estimates the short-run (Kennedy, 2008). Intu-

itively, the fixed effects models is the most appropriate to estimate short-run relations between

agricultural revenues and annual weather conditions.

The random effects model estimates the heterogeneity in micro units arising from the unobserv-

able and omitted variables. There are some unmeasured explanatory variables that affect the

behaviour of individuals differently (or uniformly but differently in each time period). Omitting

these variables causes bias in the estimation, and the random effects model has the ability to

deal with the omitted variable problem (Kennedy, 2008). The random effects estimator uses in-

formation from within and between estimators which makes it more efficient than a fixed effects

model. Since the random effects model uses between variations, it can produce estimates of the

coefficients of the time invariant explanatory variables. Moreover, because the random effects

estimator uses both the cross sectional and time series data components it produces estimates

that mix short-run and long-run effects (Kennedy, 2008). Three random effects models are
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estimated for European agriculture revenues:

– Random effects model with a SEM (RE-SEM-w) including annual weather fluctuations and

only time varying variables as in the fixed effects models:

Rit = β0 + β1Wit + β2Zit + εit, (4)

εit = αi + ρ
N∑
k

wikνit + uit,

where the residual term εit is composed of the specific individual random effect αi, and the

spatially autocorrelated error term, wit is the generic element of a non negative, NxN spatial-

weight matrix W, ρ is the spatial autocorrelation coefficient, νit is the spatially correlated error

term, and uit is the error term.

– Random effects model with a SEM (REi-SEM-w) to consider annual weather fluctuations,

and time varying (Zit) and time unvarying (Si) variables including country dummies introduced

to capture individual country effects:

Rit = β0 + β1Wit + β2Si + β3Zit + εit, (5)

εit = αi + ρ
N∑
k

wikνit + uit.

The advantage of the random effects model is that it accounts for time invariant variables such

as soil quality or altitude which can be important in studies of climate and agriculture.

– Random effects model with a SEM (REi-SEM-c) which considers long-term climate averages

(Ci), and time unvarying variables including country individual effects:

Rit = β0 + β1C̄i + β2Si + β3Zit + εit, (6)

εit = αi + ρ
N∑
k

wikνit + uit.

All five model specifications (equations from 4.3 to 4.7) take net agriculture revenues as the

dependent variable to test the first two hypotheses about the short-run climate change impacts

on European agriculture. To complete the analysis we estimate a long-run relation function

based on the Ricardian approach suggested by (Mendelsohn et al., 1994). This is the last

model we estimate; it allows us to test the third hypothesis on the differences among short-

run and long-run climate impacts on European agriculture. The random effects with a SEM

(REi-SEM-Ri) can be written as follows:

ln(Vit) = β0 + β1C̄i + β2Si + β3Zit + εit, (7)

εit = αi + ρ

N∑
k

wikνit + uit,

8



Table 2: Tested hypotheses

Hypotheses Estimated models

H1 Fixed effects model is the most appropriate to es-

timate short-run relations;

FEi-SEM-w, FEt-SEM-w, RE-

SEM-w, REi-SEM-w;

H2 Weather variables are more accurate than climatic

variables in a revenue function model;

Models from H1 vs REi-SEM-c;

H3 Short-run vs long-run climate effects on agricul-

ture: revenue approach is appropriate to capture

short-run climate change impacts on European

agriculture.

Models from H1 vs REi-SEM-cRi.

where the dependent variable Vit represents the land values in the region i at time t, and is

expressed in logarithmic form.

Finally, the hypotheses testing is completed by an examination and comparison of the marginal

impacts among the different models. The marginal values are a measure of the impact of cli-

mate on agriculture and allow an evaluation of the differences among models. Marginal values

are calculated as a derivative of the revenue function with respect to the climate variable. For

example, the marginal values of the weather variables can be written as follows:

∂ Ri

∂ W
=

∑
(γ̂1 + 2γ̂2W̄i), (8)

where γ1 and γ2 are combinations of β associated to the climate variables and depending on the

model specification estimated, and Wi is a set of explanatory weather variables (temperature

and precipitation for four seasons) and their squares. We use the marginal weather and climate

values to approximate the changes in economic welfare. Each farm can react differently to the

new climate: if total marginal value is positive then the increasing temperature and precipitation

is beneficial to the representative farm in region i, it allows farmers to increase their supply and,

thus, the producer surplus; if it is negative then warmer and wetter weather will be harmful

to the farm, resulting into a negative supply shock reducing producer surplus and economic

welfare.

2.2 Hypotheses

In this case study, we test following economic hypotheses: H1 – a fixed effects model is the most

appropriate to estimate short-run relations; H2 – in a revenue function model weather variables

are more accurate than climatic variables to capture short-run climate change impacts; H3 –

climate impacts differ depending on whether the model captures short-run or long-run climate

change.

First, to test hypothesis H1, we estimate the following econometric spatial panel data mod-
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els adapted to net European agricultural revenues per hectare, and using annual weather data:

Fixed individual effects model with spatial error autocorrelation (2), fixed temporal effects with

SEM (3), individual random effects model with SEM (4) with only time variant variables as

in the fixed effects models, and individual random effects model with SEM (5) which includes

time invariant variables and controls for country individual effects.

Second, to test H2, the estimation results based on the temperature and precipitation vari-

ables represented by year-by-year weather variations during the observation period 2004-2012

(cf. models (2), (3), (4), (5)) are compared to the estimation results using long run climate

averages to represent the temperature and precipitation variables (6).

Third, to test H3, we estimate a Ricardian model based on land values (7) which is assumed to

capture long-run climate impacts on agriculture. Then we compare the revenue model capturing

short-run effects and the land-value model capturing long-run climate impacts on agriculture.

3 Data

We are working at the scale of European FADN regions. We construct a balanced panel database

for N=106 European FADN regions covering a nine year period (2004-2012).

This study examines climate and weather data use in the revenue function provided by Joint

Research Centre (JRC) data. The JRC database is a set of meteorological grid data generated

by interpolation of daily data from weather stations providing daily precipitation, and min-

imum and maximum temperatures. We use the JRC database to construct two information

sets. First, we calculate long term observed climate averages for each FADN region during the

period 1979-2003. Second, we calculate year-by-year weather variables for the observed period

2004-2012. We consider panel data issues related to agricultural revenue, and discuss use of

climate and weather variables provided by the JRC database, in a revenue function approach.

All descriptive statistics are reported in table 6 of the appendix.

The literature generally uses two types of variables: (i) four season average temperature and

precipitation variables, and their squares, and (ii) degree day variables over the growing season,

and total precipitation variables (yearly or covering the same growing season) inspired by more

agronomic arguments. The majority of European studies use four season averaged climate

variables. Vaitkeviciute et al. (2018) compared and discussed the possibility in a European

agriculture case of using climate variables linked to the growing season, and to the four seasons.

We showed that four season based variables were better adapted to capturing the climate risks

to which European agriculture is exposed. Thus, we calculate temperature and precipitation

averages for the four seasons corresponding to winter (December-February), spring (March-

May), summer (June-August), and autumn (September-November).
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Table 3: Specification tests

Hypotheses RE-SEM-w REi-SEM-w

Spatial Hausman test (SHT)

H0: SEM-RE is efficient χ2
17 = 1.046 χ2

17 = 5.421

H1: One model is inconsistent p = 1 p = 0.996

Joint test for spatial error correlation and random effects (LM-H)

H0: σ
2
µ = ρ = 0 2, 867.5 2, 445.0

H1: σ
2
µ 6= 0 or ρ 6= 0 p < 0.001 p < 0.001

Conditional test for spatial error correlation (BSK)

H0: ρ = 0 (assuming σ2µ ≥ 0) 25.043 20.253

H1: ρ 6= 0 (assuming σ2µ ≥ 0) p < 0.001 p < 0.001

Marginal test for random individual effects (LM1)

H0: σ
2
µ = 0 (allowing ρ 6= 0) 53.406 49.422

H1: σ
2
µ > 0 (allowing ρ 6= 0) p < 0.001 p < 0.001

Marginal test for spatial autocorrelation (LM2)

H0: ρ = 0 3.907 1.583

H1: ρ 6= 0 p < 0.001 p = 0.113

Net farm revenues are provided by the FADN dataset and are available at farm level. We

calculate aggregate net revenue at the scale of the FADN region. The FADN database also

provides information on the utilized agricultural area (UAA) including owned UAA and rented

UAA. In our study, we calculate the share of total rented UAA. The FADN database includes

information on the representativeness of farms within a given region. We use this information

to weight all the variables provided by the FADN database to calculate regional mean values.

We use the European Soil Database data to calculate the soil texture variables and altitudes

for FADN regions.

4 Results

4.1 Short-term climate change impacts

The estimation results for the different models are presented in table 4. The first economic hy-

pothesis tests whether fixed effects models are the most appropriate to estimate the short-run

relations between the weather and agriculture revenues.

We estimate fixed effects and random effects models with SEM in order to account for indi-
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Table 4: Short-term impacts estimation

Dependent variable: Net revenue per 100 ha

Weather

FEi-SEM-w FEt-SEM-w RE-SEM-w REi-SEM-w

Temperature winter −0.003 −0.633 0.046 −0.020

(0.187) (0.669) (0.193) (0.192)

Temperature winter squared −0.022 −0.132∗∗∗ −0.021 −0.023

(0.018) (0.046) (0.018) (0.018)

Temperature spring −0.126 1.476 0.184 −0.361

(0.883) (1.953) (0.862) (0.894)

Temperature spring squared 0.017 0.047 0.009 0.024

(0.041) (0.099) (0.042) (0.042)

Temperature summer 4.089∗∗ 5.899 4.185∗∗ 4.084∗∗

(1.899) (3.737) (1.985) (1.965)

Temperature summer squared −0.105∗∗ −0.202∗∗ −0.105∗∗ −0.108∗∗

(0.051) (0.098) (0.053) (0.052)

Temperature autumn −1.439 −5.086∗∗ −1.350 −1.751∗

(0.920) (2.524) (0.952) (0.951)

Temperature autumn squared 0.030 0.234∗∗ 0.030 0.041

(0.037) (0.095) (0.038) (0.038)

Precipitation winter 0.016 0.100 0.019 0.009

(0.041) (0.106) (0.044) (0.043)

Precipitation winter squared 0.0001 −0.0004 0.00004 0.0001

(0.0003) (0.001) (0.0003) (0.0003)

Precipitation spring −0.067∗ 0.041 −0.062 −0.072∗

(0.040) (0.114) (0.043) (0.042)

Precipitation spring squared 0.001∗∗ −0.0001 0.001∗ 0.001∗∗

(0.0003) (0.001) (0.0003) (0.0003)

Precipitation summer −0.077∗∗ −0.137∗ −0.078∗∗ −0.076∗∗

(0.030) (0.078) (0.032) (0.031)

Precipitation summer squared 0.0004∗∗∗ 0.001∗ 0.0004∗∗ 0.0005∗∗∗

(0.0002) (0.0004) (0.0002) (0.0002)

Precipitation autumn −0.043 −0.045 −0.039 −0.047

(0.033) (0.091) (0.035) (0.034)

Precipitation autumn squared 0.0002 0.0002 0.0002 0.0002

(0.0002) (0.0005) (0.0002) (0.0002)

Rented share −0.139∗∗ −0.267∗∗∗ −0.173∗∗∗ −0.220∗∗∗

(0.071) (0.036) (0.056) (0.066)

Population per ha 0.825

(0.583)

Clay −1.299

(0.954)

Sand −0.903

(0.586)

Altitude 0.003

(0.008)

AT −20.867

BE 1.835

DE −8.331

DK −15.433

EL 2.362

ES −7.324

FI −14.690

IE −21.974

IT 2.956

LT −19.351

LU −6.486

LV −15.730

NL 1.090

PL −14.244

PT −8.424

SE −23.356∗∗

SI −25.477

UK −19.130∗∗

Constant −7.277 77.487

(18.310) (49.484)

rho 0.122∗∗ 0.251∗∗∗ 0.136∗∗ 0.105∗

(0.051) (0.047) (0.050) (0.047)

phi 7.214∗∗∗ 5.764∗∗

(1.072) (0.868)

RMSE 19.502 19.673 19.076 17.117

Note: N=106; T=9; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Figure 1: Total marginal weather impacts, in hundreds of euros per hectare

vidual heterogeneity and spatial autocorrelation. We estimate four models for the short-run

relations between weather and agricultural revenues: FEi-SEM-w, FEt-SEM-w, RE-SEM-w,

REi-SEM-w (cf. table 1). We ran some specification tests adapted to the spatial panel data

presented in table 3. First, the spatial Hausman test (SHT) is used to test the efficiency of the

spatial random effects estimator. Then we used a joint test for spatial error correlation and

random effects (LM-H), a conditional test for spatial error correlation (BSK), and the marginal

random individual effects (LM1) and spatial autocorrelation (LM2) tests developed by Baltagi

et al. (2003).

The coefficients related to the SHT test are not highly significant at 1%. Thus, the null hy-

pothesis of the consistency of the spatial random effects estimator is not rejected. The model

specifications based on weather data and taking account only of the time variant variables con-

firm the existence of spatial autocorrelation and do not reject random effects. The statistics

of all the other tests are significant at 1% confirming spatial error autocorrelation. Also, these

tests do not reject the random effects model which is a mixed model able to capture short-run

and long-run relations.
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Table 5: Total weather and climate marginal values

Revenue approach Ricardian approach

Country FEi-SEM-w FEt-SEM-w RE-SEM-w REi-SEM-w REi-SEM-c REi-SEM-cRi

Austria -0.06e/ha 0.21e/ha 0.34e/ha -0.43e/ha -4.37e/ha 4.40e/ha

[-0.44 ; 0.33] [-0.35 ; 0.77] [-0.03 ; 0.72] [-0.82 ; -0.04] [-7.24 ; -1.49] [3.71 ; 5.09]

Belgium -0.18e/ha 0.25e/ha 0.19e/ha -0.48e/ha -2.83e/ha 54.56e/ha

[-0.57 ; 0.20] [-0.31 ; 0.81] [-0.19 ; 0.57] [-0.87 ; -0.10] [-5.70 ; 0.05] [44.21 ; 64.92]

Germany -0.22e/ha 0.11e/ha 0.17e/ha -0.55e/ha -4.05e/ha 63.13e/ha

[-0.60 ; 0.17] [-0.45 ; 0.67] [-0.21 ; 0.54] [-0.94 ; -0.17] [-6.92 ; -1.17] [51.85 ; 74.40]

Denmark 0.04e/ha 0.51e/ha 0.46e/ha -0.31e/ha -2.58e/ha 36.41e/ha

[-0.34 ; 0.43] [-0.04 ; 1.07] [0.08 ; 0.83] [-0.70 ; 0.07] [-5.46 ; 0.29] [25.25 ; 47.56]

Greece -1.33e/ha -0.74e/ha -1.02e/ha -1.52e/ha 2.45e/ha 6.72e/ha

[-1.72 ; -0.95] [-0.29 ; -0.18] [-1.40 ; -0.65] [-1.91 ; -1.14] [-0.42 ; 5.33] [-0.40 ; 13.85]

Spain -0.89e/ha -0.38e/ha -0.56e/ha -1.11e/ha 0.30e/ha 8.54e/ha

[-1.27 ; -0.50] [-0.94 ; 0.18] [-0.93 ; -0.18] [-1.49 ; -0.72] [-2.57 ; 3.18] [4.19 ; 12.89]

Finland 0.18e/ha 0.32e/ha 0.67e/ha -0.33e/ha -6.47e/ha 4.89e/ha

[-0.20 ; 0.57] [-0.24 ; 0.87] [0.30 ; 1.05] [-0.72 ; 0.05] [-9.35 ; -3.60] [2.87 ; 6.92]

France -0.40e/ha 0.05e/ha -0.05e/ha -0.68e/ha -2.37e/ha 11.04e/ha

[-0.79 ; -0.02] [-0.51 ; 0.60] [-0.42 ; 0.33] [-1.07 ; -0.30] [-5.25 ; 0.51] [8.29 ; 13.78]

Ireland 0.27e/ha 0.38e/ha 0.66e/ha -0.04e/ha -3.83e/ha 61.07e/ha

[-0.11 ; 0.66] [-0.18 ; 0.94] [0.29 ; 1.04] [-0.43 ; 0.35] [-6.71 ; -0.96] [47.89 ; 74.26]

Italy -0.84e/ha -0.30e/ha -0.50e/ha -1.09e/ha 0.52e/ha 40.23e/ha

[-1.23 ; -0.46] [-0.86 ; 0.26] [-0.88 ; -0.13] [-1.47 ; -0.70] [-2.35 ; 3.40] [22.23 ; 58.23]

Lithuania -0.14e/ha 0.26e/ha 0.28e/ha -0.55e/ha -5.54e/ha 2.30e/ha

[-0.53 ; 0.24] [-0.30 ; 0.81] [-0.10 ; 0,65] [-0.93 ; -0.16] [-8.42 ; -2.67] [1.84 ; 2.75]

Luxembourg -0.24e/ha 0.10e/ha 0.13e/ha -0.56e/ha -4.45e/ha 36.94e/ha

[-0.63 ; 0.15] [-0.46 ; 0.66] [-0.24 ; 0.51] [-0.95 ; -0.17] [-7.32 ; -1.57] [30.35 ; 43.53]

Latvia -0.08e/ha 0.29e/ha 0.35e/ha -0.50e/ha -5.56e/ha 1.40e/ha

[-0.47 ; 0.30] [-0.27 ; 0.85] [-0.02 ; 0.73] [-0.89 ; -0.12] [-8.43 ; -2.68] [1.06 ; 1.74]

Netherlands -0.11e/ha 0.35e/ha 0.26e/ha -0.42e/ha -2.14e/ha 150.17e/ha

[ -0.50 ; 0.27] [-0.21 ; 0.91] [-0.11 ; 0.64] [-0.81 ; -0.03] [-5.01 ; 0.74] [120.88 ; 179.46]

Poland -0.28e/ha 0.10e/ha 0.12e/ha -0.64e/ha -4.57e/ha 10.84e/ha

[-0.66 ; 0.11] [-0.46 ; 0.66] [-0.26; 0.49] [-1.03 ; -0.26] [-7.45 ; -1.67] [9.02 ; 12.67]

Portugal -1.01e/ha -0.22e/ha -0.72e/ha -1.14e/ha 3.12e/ha 5.07e/ha

[-1.39 ; -0.62] [-0.78 ; 0.34] [-1.09 ; -0.34] [-1.53 ; -0.76] [0.24 ; 6.00] [3.20 ; 6.94]

Sweden 0.22e/ha 0.26e/ha 0.69e/ha -0.25e/ha -6.04e/ha 9.55e/ha

[-0.16 ; 0.61] [-0.30 ; 0.82] [0.32 ; 1.07] [-0.64 ; 0.13] [-8.91 ; -3.16] [6.52 ; 12.59]

Slovenia -0.48e/ha -0.13e/ha -0.12e/ha -0.79e/ha -3.22e/ha 32.32e/ha

[-0.86 ; -0.09] [-0.69 ; 0.43] [-0.49 ; 0.26] [-1.17 ; -0.40] [-6.09 ; -0.34] [26.92 ; 37.72]

United-

Kingdom

0.24e/ha 0.44e/ha 0.64e/ha -0.09e/ha -3.21e/ha 30.53e/ha

[-0.15 ; 0.62] [-0.12 ; 1.00] [0.26 ; 1.01] [-0.47 ; 0.30] [-6.08 ; -0.33] [23.62 ; 37.43]

Note: Confidence interval at 95% is presented in parentheses. For revenue approach models, values are presented in hundreds of euros. Marginal

values are not directly comparable between revenue and Ricardian approach models, the values are for only illustrative manner to observe

positive or negative impacts.

The estimated coefficients of the four models presented in table 4 show that the results are

stable and very similar for the individual fixed effects and random effects models, especially

for the statistically significant coefficients of summer temperature and precipitation. All the

models predict a concave, increasing but at a decreasing rate relation between mean summer

temperature and farmer’s revenue. For the optimal summer temperature values for European

14



agriculture, the FEi-SEM-w model predicts 19.5◦C and the RE-SEM-w model predicts 20◦C.

The optimal temperature value indicates when a higher temperature begins to have a negative

impact on agriculture. Knowing that in the observed period summer temperatures range from

10.6◦C (minimum) to 26.1◦C (maximum) with an average of 18.7◦C, we note that in Europe the

optimal temperature predicted by these models has been reached and some regions are suffering

from overly high summer temperatures.

The FEt-SEM-w and REi-SEM-w models suggest significant and decreasing at a increasing rate

impacts of autumn temperatures. In the observed EU regions the average autumn temperature

ranges between 0◦C and 20◦C. According to the FEt-SEM-w estimates autumn temperatures

below approximatively 11◦C temperature increases have harmful short-term impacts on agri-

culture, and above this threshold have increasing positive impacts. REi-SEM-w model suggests

even more severe impacts and a threshold close to 21◦C.

To show more precisely how weather affects agriculture revenues we calculate total marginal

weather impacts using equation (8). Total marginal values per FADN region for our four short-

run models are presented in figure 1, and average values per country are reported in table 5.

First, we observe that all the models show that the most harmful short-run weather impacts

are in southern European regions. However, their amplitude varies slightly between models.

The temporal fixed effects model proposes positive weather impacts with lowest variation in

marginal impact values. The FEi-SEM-w model suggests more negative short-run impacts, and

estimates harmful marginal weather impacts for the majority of European regions with only a

few northern regions benefiting from warmer and wetter weather conditions. The RE-SEM-w

model shows a positive impact for northern Europe and negative impacts for southern regions.

This model shows the highest variability between the highest and lowest marginal impact val-

ues. However, the REi-SEM-w model which includes time in-variant variables and controls for

fixed country effects, is more pessimistic than the three previous models and predicts negative

marginal impacts for almost all European regions except a few northern FADN regions, and

negative impacts for all of Europe based on country averages (5).

The results show that these models seem to be adapted to measuring short run climate impacts

on agriculture revenues, and the inter-model variations suggest intervals of possible impacts

rather than a single value related to uncertainty. However, based on the confidence intervals

of marginal weather impacts, our results suggest that, statistically, the REi-SEM-w model is

better than the others because it has the most of significant marginal values.

4.2 Weather data versus climate data in revenue models

The second economic hypothesis tests whether the weather variables are more accurate than

climate variables in a revenue approach. We start by estimating a REi-SEM-c model which

takes account of climate variables instead of weather. The estimation results are reported in

appendix table 7. Note first that in the climate based model the estimated statistically signifi-
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cant coefficients of autumn temperature are very high, resulting in an average marginal autumn

temperature impact on land value of -2,004e/ha. These are the only statistically significant

coefficients in this model, however the autumn temperature should not be the only determinant

of agricultural revenues in Europe.

Our tests of H2 are completed by comparing marginal values. The total marginal climate

impacts for the REi-SEM-c model are depicted in figure 2 and presented in table 5. Com-

paring the maps in figures 2 and 1 we observe important differences between the models using

weather and those using climate variables. In the climate based model the marginal values have

a significantly wider range (from -800 to +800 e/ha) and suggest counter intuitive marginal

impacts. This model suggests that a warmer and wetter climate would be harmful to agricul-

ture in central and northern European regions, and that southern regions would benefit from a

warmer climate. Thus, the results differ significantly for the models based on weather data and

long-term-average climate data. The climate data model seems not to be a good indicator of

climate change impacts on annual European agricultural revenues. Thus, we find support for

H2.

Figure 2: Total marginal effect of climate in a revenue model, in hundreds of euros per hectare

4.3 Short-run and long-run climate change impacts on European

agriculture

Finally, we compare the results obtained so far for short run impacts with the results estimated

for long-run impacts (see H3). We estimate a Ricardian model based on land values and long-
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term average climate conditions (cf. model (??)). We compare marginal values for short-run

impacts in the revenue approach presented in section 4.4.1. to the estimated long-run impacts

from the Ricardian model.

These long-run estimated total marginal values are depicted in figure 3 of appendix and pre-

sented in table 5. The Ricardian model assumes that farmers implement some adaptations

based on their observation of the changing climate which triggers maximizing behaviour. Thus,

the long-term impacts are estimated to be beneficial to European agriculture, with some harm-

ful impacts on a few southern European regions. These results are similar to those found in

previous studies (Van Passel et al., 2017; Vanschoenwinkel et al., 2016).

Table 5 presents total marginal values for short-run and long-term impacts. Average long-run

impacts by country are estimated to be positive in all European countries. We observe smaller

impacts for southern countries, e.g. only 0.06% of farmland value per hectare for Greece (equal

to 6.72e/ha), and 0.13% of land value per hectare for Spain (8.54e/ha). Although those im-

pacts are positive, these smaller values show that for southern regions it will be more difficult

to adapt in order to benefit from climate change.

Table 5 presents heterogeneous but mostly negative short-term impacts across European coun-

tries. Short-term impacts imply no adaptations by farmers, or anticipation of future climate

conditions. Thus, farmers experience revenue gains or losses due to weather fluctuations. For

example, the FEi-SEM-w model estimates negative short-term marginal impacts for the major-

ity of European countries, and the REi-SEM-w model predicts that in the short-term warmer

and wetter weather will be harmful to all European regions, especially the countries of south-

ern Europe, with the highest losses for Portugal and Greece in the FEi-SEM-w model, and

for Greece, Spain, Italy and Portugal in the REi-SEM-w model. However, three of the four

short-term models estimate positive short-run marginal climate change impacts for northern

European countries, implying that even with no adaptive behaviour northern agriculture will

benefit from a warmer and wetter climate.

Finally, if we compare short-run and long-run climate change impacts on European agricul-

ture we observe negative impacts in the former case and more positive impacts in the latter

case. These results confirm the importance of adaptation measures to face climate change. In-

deed, the short-run impacts model do not take account of potential adaptations and show only

gross impacts. In the context of no adaptation measures, these short-run impacts could per-

sist. However, the long-run model includes farmers’ adaptations, and offers a more optimistic

vision of climate impacts while increasing public awareness of the impacts of climate change on

agriculture and the importance of adaptations.
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5 Conclusion

Understanding the potential effects of climate change on economic outcomes in agriculture is

central to identifying areas of adaptation to climate change. Our study provides an evaluation

of climate change impacts at the EU level using an agricultural revenue approach in a spatial

panel framework. We compare the impacts of short-run weather variations on the economic

profitability of European agriculture using fixed effects and random effects with SEMs. Our

models are estimated at the EU scale, and employ balanced panel data for 106 European FADN

regions covering a 9 year period (2004-2012).

Our study makes four main contributions to the literature. First, it is the first study to use

a revenue approach to measure the impacts of climate on European agriculture. Previous

European studies use a Ricardian approach to estimate long-run relationships between climate

and agricultural activity. Our models show negative climate impacts on agricultural revenues

for southern regions, and positive impacts for northern regions.

Second, we estimate climate change impacts taking account of spatial autocorrelation and

individual heterogeneity among EU regions. The revenue function approach was proposed by

Deschênes and Greenstone (2007) to estimate the short-term impacts of climate on agriculture.

Their paper was criticized because it took no account of spatial autocorrelation. We account

for spatial autocorrelation and estimate SEMs. We ran some statistical specification tests to

confirm the presence of spatial autocorrelation in our models.

Third, we discuss the relevance of variables based on annual weather variations rather than

climate data in a revenue function approach. This was one of the main motivations for our

study. The most common application of agricultural revenue as the dependent variable is in

work based on a Ricardian framework, and thus, long term climate averages. We argue that

agriculture revenues are affected directly by annual weather conditions, and not by 25 or 30-

year average past climate. In this study we compared estimations based on weather and climate

data. Our results show significant differences in the estimated impacts. It suggests caveats to

the use of climate data in a revenue function based analysis of European agriculture.

Finally, comparison of short-run and long-run climate change impacts shows that the northern

European countries will benefit from a changing climate in both cases. However, our results

point to the importance of adapting to climate change to avoid harmful impacts on agriculture

which could result in important revenue losses.
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Table 6: Descriptive statistics

Variable Units Mean Min Max Source

Net revenues per ha e/ha 1,380.00 -494.9 22,760.00 FADN

Land value per ha e/ha 15,240.00 301.3 215,600.00 2004-2012

Log land value per ha 9.04 5.70 12.28

Rented land share % 35.63 0.91 85.34

Climate

Temperature Winter ◦C 3.55 -12.14 11.71 JRC

Temperature Spring ◦C 9.93 -1.05 15.57 1979-2003

Temperature Summer ◦C 18.00 11.68 23.77

Temperature Autumn ◦C 11.71 0.21 18.99

Precipitation Winter cm 5.83 2.63 15.31

Precipitation Spring cm 5.48 2.25 10.63

Precipitation Summer cm 5.42 0.47 11.71

Precipitation Autumn cm 6.98 3.02 13.52

Weather

Temperature Winter ◦C 3.65 -15.23 12.86 JRC

Temperature Spring ◦C 10.64 -1.49 17.50 2004 - 2012

Temperature Summer ◦C 18.77 10.62 26.12

Temperature Autumn ◦C 12.39 0.09 20.25

Precipitation Winter cm 5.94 0.46 16.60

Precipitation Spring cm 5.37 0.57 17.33

Precipitation Summer cm 5.62 0.00 23.41

Precipitation Autumn cm 6.82 1.21 21.56

Population per ha nb/ha 1.97 0.04 22.86 Eurostat

2004-2012

Silt % 31.22 16.79 38.08 European Soil

Clay % 20.85 11.63 32.71 Database

Sand % 45.78 28.69 67.83 2012

Altitude m 292.70 5.92 1,691.00
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Table 7: Estimation results using climate data

REi-SEM-c REi-SEM-cRi

Temperature winter 10.448 0.278

(10.448) (0.242)

Temperature winter square −0.809 −0.030∗∗

(0.525) (0.012)

Temperature spring 21.993 −0.872

(21.932) (0.536)

Temperature spring square −0.184 0.074∗∗∗

(0.925) (0.021)

Temperature summer 21.659 1.252∗

(27.704) (0.645)

Temperature summer square −0.720 −0.046∗∗∗

(0.704) (0.016)

Temperature autumn −66.277∗∗∗ −0.373

(25.561) (0.606)

Temperature autumn square 1.958∗∗ 0.010

(0.902) (0.022)

Precipitation winter −0.529 −0.045∗∗∗

(0.651) (0.016)

Precipitation winter square 0.003 0.0002∗∗∗

(0.004) (0.0001)

Precipitation spring 0.899 0.009

(1.595) (0.036)

Precipitation spring square −0.010 −0.0002

(0.011) (0.0002)

Precipitation summer −0.200 0.006

(1.090) (0.026)

Precipitation summer square 0.001 0.0001

(0.006) (0.0001)

Precipitation autumn 0.172 0.037

(1.013) (0.025)

Precipitation autumn square 0.001 −0.0002

(0.006) (0.0001)

Rented share −0.235∗∗∗ −0.001

(0.070) (0.002)

Population per ha 0.750 0.047∗∗∗

(0.563) (0.012)

Clay −2.006∗ 0.0004

(1.061) (0.024)

Sand −1.045∗ −0.010

(0.598) (0.014)

Altitude −0.005 0.0003

(0.018) (0.0005)

Austria −25.787 −1.294∗∗∗

Belgium −7.062 1.061∗∗∗

Germany −21.202∗∗ 1.357∗∗∗

Denmark −16.944 1.462∗∗∗

Greece 26.774 2.112∗∗∗

Spain 7.414 0.557∗

Finland 11.607 1.930∗∗∗

Ireland −37.076∗ 1.435∗∗∗

Italy 16.379 1.612∗∗∗

Lithuania −27.138 −0.517

Luxembourg −16.300 0.668∗

Latvia −16.787 −0.917

Netherlands −9.142 1.868∗∗∗

Poland −26.397∗ −0.220

Portugal −16.066 −0.963∗∗

Sweden −26.847 1.147∗

Slovenia −25.765 0.126

United Kingdom −30.373∗∗ 0.628

Constant 229.403 3.922

rho 0.118∗∗ 0.659∗∗

phi 4.769∗∗∗ 2.250∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 3: Total marginal effects of climate in a land value model
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